Parcel-Level Mapping of Horticultural Crop Orchards in Complex Mountain Areas Using VHR and Time-Series Images

Author:

Jiao ShuhuiORCID,Hu Dingxiang,Shen Zhanfeng,Wang Haoyu,Dong Wen,Guo Yifei,Li Shuo,Lei Yating,Kou Wenqi,Wang Jian,He Huimei,Fang Yanming

Abstract

Accurate and reliable farmland crop mapping is an important foundation for relevant departments to carry out agricultural management, crop planting structure adjustment and ecological assessment. The current crop identification work mainly focuses on conventional crops, and there are few studies on parcel-level mapping of horticultural crops in complex mountainous areas. Using Miaohou Town, China, as the research area, we developed a parcel-level method for the precise mapping of horticultural crops in complex mountainous areas using very-high-resolution (VHR) optical images and Sentinel-2 optical time-series images. First, based on the VHR images with a spatial resolution of 0.55 m, the complex mountainous areas were divided into subregions with their own independent characteristics according to a zoning and hierarchical strategy. The parcels in the different study areas were then divided into plain, greenhouse, slope and terrace parcels according to their corresponding parcel characteristics. The edge-based model RCF and texture-based model DABNet were subsequently used to extract the parcels according to the characteristics of different regions. Then, Sentinel-2 images were used to construct the time-series characteristics of different crops, and an LSTM algorithm was used to classify crop types. We then designed a parcel filling strategy to determine the categories of parcels based on the classification results of the time-series data, and accurate parcel-level mapping of a horticultural crop orchard in a complex mountainous area was finally achieved. Based on visual inspection, this method appears to effectively extract farmland parcels from VHR images of complex mountainous areas. The classification accuracy reached 93.01%, and the Kappa coefficient was 0.9015. This method thus serves as a methodological reference for parcel-level horticultural crop mapping and can be applied to the development of local precision agriculture.

Funder

National Key research and Development Program of China

National Natural Science Foundation of China

Flexible Talent Introduction Project of Xinjiang Uygur Autonomous Region in 2018

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3