Abstract
Pseudomonasputida strain PCL1760 is a biocontrol agent protecting plants from pathogens via the mechanism of competition for nutrients and niches (CNN). To confirm this mechanism as well as to adapt the strain for biotechnological applications, full genome analysis was compared with the known biotechnological model, P. putida S12, and other related species, which were analyzed on different genomic databases. Moreover, the antibacterial activity of PCL1760 was tested against Staphylococcus aureus, Pseudomonas aeruginosa, and Pseudomonas syringae. No genetic systems involved in antibiosis were revealed among the secondary metabolite clusters of the strain of PCL1760. The only antagonistic effect was observed against P. syringae, which might be because of siderophore (yellow-greenish fluorescence), although less than 19% pyoverdin biosynthesis clusters were predicted using the AntiSMASH server. P. putida PCL1760 in comparison with the Pseudomonas simiae strain PCL1751, another biocontrol agent acting solely via CNN, which lost its ‘luxury’ genes necessary for antibiosis or parasitism/predation mechanisms, but carries genetic systems providing motility. Interestingly, immunity genes (CRISPR/Cas and prophages) showed PCL1760 to be robust in comparison with S12, while annotation on OrthoVenn2 showed PCL1760 to be amenable for genetic manipulations. It is tempting to state that rhizobacteria using the mechanism of CNN are distinguishable from biocontrol agents acting via antibiosis or parasitism/predation at the genomic level. This confirms the CNN of PCL1760 as the sole mechanism for biocontrol and we suggest the strain as a new model for genetic engineering.
Funder
Ministry of Education and Science of the Russian Federation
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献