Biofilm Formation, and Related Impacts on Healthcare, Food Processing and Packaging, Industrial Manufacturing, Marine Industries, and Sanitation–A Review

Author:

Shineh Ghazal1,Mobaraki Mohammadmahdi2,Perves Bappy Mohammad Jabed3,Mills David K.4ORCID

Affiliation:

1. School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia

2. Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran 1591634311, Iran

3. Micro and Nanoscale Systems Engineering, Louisiana Tech University, Ruston, LA 71272, USA

4. School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA

Abstract

Biofilm formation can lead to problems in healthcare, water distribution systems, food processing and packaging, industrial manufacturing, marine industries, and sanitation. These microbial communities can proliferate on biotic or abiotic surfaces, and are responsible for human disease and decreasing production efficiency and service equipment life in many industrial fields. The formation of biofilm starts with the attachment of bacteria to the surface, followed by bacterial proliferation and maturation of the microbial community. After forming a biofilm, bacteria not resistant to antimicrobial agents in their planktonic forms can turn resistant. The antibiotic resistance of bacterial biofilm, and the association of biofilms in generating infectious diseases in humans, highlight the need for designing novel and successful antibacterial, anti-biofilm, or anti-infection materials. This paper aims to review the mechanism of biofilm formation, the impact on different industries, the interaction mechanism of nanoparticles with bacteria, and strategies to design anti-biofilm materials. Examples of designing anti-infection bio-implants, coatings, medical devices, wound dressings, and sutures are reviewed.

Funder

NASA EPSCoR Rapid Response Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3