Physical and Chemical Synthesis of Au/CeO2 Nanoparticle Catalysts for Room Temperature CO Oxidation: A Comparative Study

Author:

Saoud Khaled MohammadORCID,El-Shall Mohamed Samy

Abstract

In many heterogeneous catalytic reactions, such as low-temperature CO oxidation, the preparation conditions, and the role of the CeO2 support (oxygen vacancies and redox properties) in the dispersion and the chemical state of Au, are considered critical factors for obtaining gold nanoparticle catalysts with high catalytic performance. In this work, the physical and chemical preparation methods were compared, aiming at understanding how the preparation method influences the catalytic activity. The Au/CeO2 nanoparticle catalysts with 5% Au loading were prepared via the Physical Laser Vaporization Controlled Condensation method (LVCC), and the chemical Deposition-Precipitation method (DP) was used to investigate the effect of synthesis methods on the structure and the catalytic activity toward the CO oxidation. In this manuscript, we compare the activity of nanostructured Au/CeO2 catalysts. The structure and the redox properties of the catalysts were investigated by the XRD, SEM, TEM, TPR, and XPS. The catalytic activity for low-temperature CO oxidation was studied using a custom-built quartz tube flow reactor coupled with an infrared detector system at atmospheric pressure. The study reveals that the prepared CeO2-supported Au nanoparticles’ catalytic activity was highly dependent on the preparation methods. It showed that the sample prepared by the DP method exhibits higher catalytic efficiency toward CO oxidation when compared with the sample prepared by the LVCC method. The high catalytic activity could be attributed to the small particle size and shape, slightly higher Au concentration at the surface, surface-active Au species such as Au1+, along with the large interface between Au and CeO2. This study suggests that the stability, dispersion of Au nanoparticles on CeO2, and strong interaction between Au and CeO2 lead to strong oxidation ability even below room temperature. Considering the universal character of different physical and chemical methods for Au/CeO2 preparation, this study may also provide a base for supported Au-based catalysts for many oxidation reactions in energy and environmental applications.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3