Author:
Brune Andreas,Seidel-Morgenstern Andreas,Hamel Christof
Abstract
This study intends to provide insights into various aspects related to the reaction kinetics of the VOx catalyzed propane dehydrogenation including main and side reactions and, in particular, catalyst deactivation and regeneration, which can be hardly found in combination in current literature. To kinetically describe the complex reaction network, a reduced model was fitted to lab scale experiments performed in a fixed bed reactor. Additionally, thermogravimetric analysis (TGA) was applied to investigate the coking behavior of the catalyst under defined conditions considering propane and propene as precursors for coke formation. Propene was identified to be the main coke precursor, which agrees with results of experiments using a segmented fixed bed reactor (FBR). A mechanistic multilayer-monolayer coke growth model was developed to mathematically describe the catalyst coking. Samples from long-term deactivation experiments in an FBR were used for regeneration experiments with oxygen to gasify the coke deposits in a TGA. A power law approach was able to describe the regeneration behavior well. Finally, the results of periodic experiments consisting of several deactivation and regeneration cycles verified the long-term stability of the catalyst and confirmed the validity of the derived and parametrized kinetic models for deactivation and regeneration, which will allow model-based process development and optimization.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献