Automated Machine Learning System for Defect Detection on Cylindrical Metal Surfaces

Author:

Huang Yi-ChengORCID,Hung Kuo-Chun,Lin Jun-Chang

Abstract

Metal workpieces are indispensable in the manufacturing industry. Surface defects affect the appearance and efficiency of a workpiece and reduce the safety of manufactured products. Therefore, products must be inspected for surface defects, such as scratches, dirt, and chips. The traditional manual inspection method is time-consuming and labor-intensive, and human error is unavoidable when thousands of products require inspection. Therefore, an automated optical inspection method is often adopted. Traditional automated optical inspection algorithms are insufficient in the detection of defects on metal surfaces, but a convolutional neural network (CNN) may aid in the inspection. However, considerable time is required to select the optimal hyperparameters for a CNN through training and testing. First, we compared the ability of three CNNs, namely VGG-16, ResNet-50, and MobileNet v1, to detect defects on metal surfaces. These models were hypothetically implemented for transfer learning (TL). However, in deploying TL, the phenomenon of apparent convergence in prediction accuracy, followed by divergence in validation accuracy, may create a problem when the image pattern is not known in advance. Second, our developed automated machine-learning (AutoML) model was trained through a random search with the core layers of the network architecture of the three TL models. We developed a retraining criterion for scenarios in which the model exhibited poor training results such that a new neural network architecture and new hyperparameters could be selected for retraining when the defect accuracy criterion in the first TL was not met. Third, we used AutoKeras to execute AutoML and identify a model suitable for a metal-surface-defect dataset. The performance of TL, AutoKeras, and our designed AutoML model was compared. The results of this study were obtained using a small number of metal defect samples. Based on TL, the detection accuracy of VGG-16, ResNet-50, and MobileNet v1 was 91%, 59.00%, and 50%, respectively. Moreover, the AutoKeras model exhibited the highest accuracy of 99.83%. The accuracy of the self-designed AutoML model reached 95.50% when using a core layer module, obtained by combining the modules of VGG-16, ResNet-50, and MobileNet v1. The designed AutoML model effectively and accurately recognized defective and low-quality samples despite low training costs. The defect accuracy of the developed model was close to that of the existing AutoKeras model and thus can contribute to the development of new diagnostic technologies for smart manufacturing.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. Reducing the dimensionality of data with neural networks;Hinton;Science,2006

2. Deep learning;Lecun;Nature,2015

3. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016, January 27–30). You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.

4. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, M. (2016, January 2–4). Tensorflow: A system for large-scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA.

5. Ketkar, N. (2017). Deep Learning with Python, Apress.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3