Energy Management of Hybrid Electric Urban Bus by Off-Line Dynamic Programming Optimization and One-Step Look-Ahead Rollout

Author:

Tormos BernardoORCID,Pla Benjamín,Bares Pau,Pinto Douglas

Abstract

Due to the growing air quality concern in urban areas and rising fuel prices, urban bus fleets are progressively turning to hybrid electric vehicles (HEVs) which show higher efficiency and lower emissions in comparison with conventional vehicles. HEVs can reduce fuel consumption and emissions by combining different energy sources (i.e., fuel and batteries). In this sense, the performance of HEVs is strongly dependent on the energy management strategy (EMS) which coordinates the energy sources available to exploit their potential. While most EMSs are calibrated for general driving conditions, this paper proposes to adapt the EMS to the specific driving conditions on a particular bus route. The proposed algorithm relies on the fact that partial information on the driving cycle can be assumed since, in the case of a urban bus, the considered route is periodically covered. According to this hypothesis, the strategy presented in this paper is based on estimating the driving cycle from a previous trip of the bus in the considered route. This initial driving cycle is used to compute the theoretical optimal solution by dynamic programming. The obtained control policy (particularly the cost-to-go matrix) is stored and used in the subsequent driving cycles by applying one-step look-ahead roll out, then, adapting the EMS to the actual driving conditions but exploiting the similarities with previous cycles in the same route. To justify the proposed strategy, the paper discusses the common patterns in different driving cycles of the same bus route, pointing out several metrics that show how a single cycle captures most of the key parameters for EMS optimization. Then, the proposed algorithm (off-line dynamic programming optimization and one-step look-ahead rollout) is described. Results obtained by simulation show that the proposed method is able to keep the battery charge within the required range and achieve near-optimal performance, with only a 1.9% increase in fuel consumption with regards to the theoretical optimum. As a reference for comparison, the equivalent consumption minimization strategy (ECMS), which is the most widespread algorithm for HEV energy management, produces an increase in fuel consumption with respect to the optimal solution of 11%.

Funder

Ministerio de Ciencia e Innovación, Proyectos I+D+i 2020

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3