A multi-objective energy management optimization for a hybrid electric bus covering an urban route

Author:

Tormos Bernardo1,Pla Benjamín1ORCID,Bares Pau1,Pinto Douglas1ORCID

Affiliation:

1. CMT—Motores Térmicos, Universitat Politécnica de Valéncia, Valencia, Spain

Abstract

The development of electrified vehicles is a promising step toward energy savings, emissions reduction, environmental protection, and more sustainable economic growth. In the case of hybrid electric vehicles (HEVs), the energy management strategy (EMS) is essential for their efficiency and energy consumption. Typically, EMS employs rule-based strategies calibrated to general driving conditions. So, this paper proposes to calibrate the EMS of an urban hybrid electric bus that covers a particular route by taking advantage of past driving information. The EMS computes the percentage of the vehicle power demand that must be supplied by each of the sources (fuel and battery) and also controls the heating, ventilating and air conditioning (HVAC) system to achieve cabin thermal comfort. The proposed approach is based on employing an optimal solution by dynamic programing in a previous loop covered by the bus in the considered route. Then, the cost-to-go matrix is stored and used in the following trips by applying the one-step look-ahead rollout, taking profit from the similarities of the loops in the route. To compare and evaluate the performance of the proposed algorithm, a benchmark was carried out by employing the widespread equivalent consumption minimization strategy (ECMS) approach, combined with rule-based strategies in the HVAC control system. Finally, the pareto front presents the trade-off between cabin temperature control performance and total fuel consumption, allowing to compare and evaluate the different EMS calibrations.

Funder

Ministerio de Ciencia e Innovación, through the Proyectos I+D+i 2020 Program

Publisher

SAGE Publications

Reference33 articles.

1. IEA. Transport improving the sustainability of passenger and freight transport, https://www.iea.org/reports/global-ev-outlook-2024/trends-in-heavy-electric-vehicles (2022, accessed 16 July 2024).

2. Exploiting driving history for optimising the Energy Management in plug-in Hybrid Electric Vehicles

3. A survey of powertrain configuration studies on hybrid electric vehicles

4. Powertrain Design and Control in Electrified Vehicles: A Critical Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3