The Effect of Probiotics on Intestinal Tight Junction Protein Expression in Animal  Models: A Meta-Analysis

Author:

Ahn Sung-IlORCID,Cho Sangbuem,Jeon EunjeongORCID,Park MyungsunORCID,Chae ByunghoORCID,Ditengou Isaac Celestin Poaty,Choi Nag-JinORCID

Abstract

This study investigates the effect of probiotics supplementation on tight junction protein (TJP) expression in animal models by meta-analysis. We estimated the effect of probiotics administration in an animal inflammatory bowel disease model based on 47 collected articles from the databases, including Sciencedirect, Pubmed, Scopus, and Google Scholar. The effect size was analyzed with the standardized mean difference, and the heterogeneity of the effect sizes was assessed using Cochran’s Q test. To explain the heterogeneity, moderate analyses, such as meta-ANOVA and meta-regression, were performed using the mixed effects model. Finally, publication bias was assessed using Egger’s linear regression test. Among the evaluated items, zonula occluden (ZO)-1 showed the highest Q statistics value, and the effect sizes of all items were positive with high significance (p < 0.0001). The I2 value of all items reflected high heterogeneity (in excess of 80%). From the results of the meta-ANOVA, the factors of the heterogeneity found in the probiotics strains were investigated. Lactobacillus reuteri was identified as having the greatest effect on claudin and ZO-1 expression. The publication bias was detected by the Egger’s linear regression test, though it revealed that the occludin and ZO-1 had larger sample sizes than the claudin. In sum, this meta-analysis reveals that probiotics are effective at improving TJP expression in a gut environment of inflammatory bowel disease (IBD)-induced animal model. Our findings will interest IBD patients, as they suggest an area warranting future study.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3