Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System

Author:

Li Huan,Bu SiqiORCID,Wen Jiong-Ran,Fei Cheng-WeiORCID

Abstract

It is vital to improve the stability of the power system by accurately identifying the modal parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time. A new method based on empirical mode decomposition (EMD), stochastic subspace identification (SSI), and Prony algorithms, called synthetical modal parameters identification (SMPI) method, is developed by efficiently matching the modal parameters of DLFO which are acquired from the SSI and Prony algorithm. In this approach, EMD is used for denoising the raw oscillation signals thereby enhancing the noise resistance, and then using the SSI and Prony algorithms to identify the precise modal parameters assisted by parameter matching. It is demonstrated that the proposed SMPI method holds great accuracy in identifying full modal parameters including natural frequencies, damping ratios, amplitudes, and phase angles with simulated signals with known modal parameters and real-time signals from some power system case studies. The strategy of SMPI has effectively overcome the weakness of a single approach, and the identification results are promising to heighten the stabilization of power systems. Besides, SMPI shows the potential to troubleshoot in different fields, such as construction, aeronautics, and marine, for its satisfactory robustness and generalization ability.

Funder

National Natural Science Foundation of China

Shanghai Belt and Road International Cooperation Project of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3