Tracking Modal Parameters of Structures Online Using Recursive Stochastic Subspace Identification under Ambient Excitations

Author:

Huang Shieh-Kung1ORCID,Chen Jin-Quan1,Weng Yuan-Tao2,Kang Jae-Do3

Affiliation:

1. Department of Civil Engineering, National Chung-Hsing University, Taichung 402202, Taiwan

2. National Center for Research on Earthquake Engineering, Taipei 106219, Taiwan

3. Earthquake Disaster Mitigation Research Division, National Research Institute for Earth Science and Disaster Resilience (NIED), Miki 673-0515, Japan

Abstract

Continuous and autonomous system identification is an alternative to regular inspection during operations, which is essential for structural integrity management (SIM) as well as structural health monitoring (SHM). In this regard, online (or real-time) system identification techniques that have recently received considerable attention can be used to assess the current condition and performance during operations and, in the meantime, can be utilized to detect any damage or deterioration. For example, stochastic subspace identification (SSI), based on recursive formulation, has proven its capability in tracking modal parameters as well as time-variant dynamic behaviors. This study proposes the implementation of recursive SSI (RSSI) using the matrix inversion lemma to track slow time-varying parameter changes under ambient excitations. Subsequently, some investigations for practical implementation are examined and discussed. For verifying the reliability of SHM applications based on the proposed methods, two datasets measured from different experiments are exploited to identify the modal parameters reclusively. The results from both numerical simulations and experimental investigations demonstrated the effectiveness of tracking the modal parameters exhibiting time-varying dynamic characteristics under white noise excitations (or ambient excitations).

Funder

National Science and Technology Council, Republic of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3