Truncated Newton Kernel Ridge Regression for Prediction of Porosity in Additive Manufactured SS316L

Author:

Abdulla Hind,Maalouf MaherORCID,Barsoum Imad,An Heungjo

Abstract

Despite the many benefits of additive manufacturing, the final quality of the fabricated parts remains a barrier to the wide adoption of this technique in industry. Predicting the quality of parts using advanced machine learning techniques may improve the repeatability of results and make additive manufacturing accessible to different fields. This study aims to integrate data extracted from various sources and use them to obtain accurate predictions of relative density with respect to the governing process parameters. Process parameters such as laser power, scan speed, hatch distance, and layer thickness are used to predict the relative density of 316L stainless steel specimens fabricated by selective laser melting. An extensive dataset is created by systematically combining experimental results from prior studies with the results of the current work. Analysis of the collected dataset shows that the laser power and scan speed significantly impact the relative density. This study compares ridge regression, kernel ridge regression, and support vector regression using the data collected for SS316L. Computational results indicate that kernel ridge regression performs better than both ridge regression and support vector regression based on the coefficient of determination and mean square error.

Funder

Khalifa University of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3