Dynamic Analysis of the Seismo-Dynamic Response of Anti-Dip Bedding Rock Slopes Using a Three-Dimensional Discrete-Element Method

Author:

Ren Zhanghao,Chen Congxin,Sun Chaoyi,Wang Yue

Abstract

Earthquakes are a major external factor that induce landslides. In order to systematically study the dynamic effects and failure mechanism of anti-dip bedding rock slopes (the slope trend is the same as the joint trend, while the slope dip direction is opposite to the joint dip direction) under seismic action (as well as the spatial effects of the structural planes in the anti-dip bedding rock slopes), three-dimensional (3D) discrete-element numerical calculations were performed to analyze anti-dip bedding rock slopes with different slope angles, joint angles, and joint trends subjected to the action of natural seismic and sinusoidal waves. The results were analyzed to investigate the amplification effect, change in Fourier spectrum, failure mechanism, and permanent displacement of the slope under the applied seismic action. The permanent displacement of the slope was calculated using Newmark’s method and the results obtained were discussed and compared with those obtained from a dynamic analysis performed using the 3D discrete-element method. The results showed that the regularity of the spatial distribution of the amplification effect was less clear than that encountered in the planar problem (unidirectional or bidirectional dynamical loading), and this leads to the effect of having an overall rhythmical nature. The seismic wave decays in the high-frequency part from the bottom up of the slope, while the dominant frequency of the seismic wave decreases. The value of the permanent displacement obtained using Newmark’s method is much smaller than that obtained using the dynamic 3D discrete-element analysis approach. The angle between the joint and slope trends has a significant effect on the amplification effect, failure mode, permanent displacement, and stability of slopes subjected to seismic action.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3