Performance Analysis of Selected Machine Learning Techniques for Estimating Resource Requirements of Virtual Network Functions (VNFs) in Software Defined Networks

Author:

Faheem Sahibzada MuhammadORCID,Babar Mohammad Inayatullah,Khalil Ruhul AminORCID,Saeed NaghamORCID

Abstract

Rapid development in the field of computer networking is now demanding the application of Machine Learning (ML) techniques in the traditional settings to improve the efficiency and bring automation to these networks. The application of ML to existing networks brings a lot of challenges and use-cases. In this context, we investigate different ML techniques to estimate resource requirements of complex network entities such as Virtual Network Functions (VNFs) deployed in Software Defined Networks (SDN) environment. In particular, we focus on the resource requirements of the VNFs in terms of Central Processing Unit (CPU) consumption, when input traffic represented by features is processed by them. We propose supervised ML models, Multiple Linear Regression (MLR) and Support Vector Regression (SVR), which are compared and analyzed against state of the art and use Fitting Neural Networks (FNN), to answer the resource requirement problem for VNF. Our experiments demonstrated that the behavior of different VNFs can be learned in order to model their resource requirements. Finally, these models are compared and analyzed, in terms of the regression accuracy and Cumulative Distribution Function (CDF) of the percentage prediction error. In all the investigated cases, the ML models achieved a good prediction accuracy with the total error less than 10% for FNN, while the total error was less than 9% and 4% for MLR and SVR, respectively, which shows the effectiveness of ML in solving such problems. Furthermore, the results shows that SVR outperform MLR and FNN in almost all the considered scenarios, while MLR is marginally more accurate than FNN.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3