Dynamic Telemetry and Deep Neural Networks for Anomaly Detection in 6G Software-Defined Networks

Author:

Rzym Grzegorz1ORCID,Masny Amadeusz2,Chołda Piotr1ORCID

Affiliation:

1. AGH University of Krakow, Institute of Telecommunications, Al. Mickiewicza 30, 30-059 Krakow, Poland

2. Independent Researcher, 30-095 Krakow, Poland

Abstract

With the increasing availability of computational power, contemporary machine learning has undergone a paradigm shift, placing a heightened emphasis on deep learning methodologies. The pervasive automation of various processes necessitates a critical re-evaluation of contemporary network implementations, specifically concerning security protocols and the imperative need for swift, precise responses to system failures. This article introduces a meticulously crafted solution designed explicitly for 6G software-defined networks (SDNs). The approach employs deep neural networks for anomaly detection within network traffic, contributing to a more robust security framework. Furthermore, the paper delves into the realm of network monitoring automation by harnessing dynamic telemetry, providing a specialized and forward-looking strategy to tackle the distinctive challenges inherent in SDN environments. In essence, our proposed solution aims to elevate the security and responsiveness of 6G mobile networks. By addressing the intricate challenges posed by next-generation network architectures, it seeks to fortify these networks against emerging threats and dynamically adapt to the evolving landscape of next-generation technology.

Funder

National Research Institute

European Regional Development Fund

Publisher

MDPI AG

Reference29 articles.

1. A Comprehensive Survey on Network Anomaly Detection;Fernandes;Telecommun. Syst.,2019

2. (2023). Cisco Annual Internet Report (2018–2023) White Paper, Cisco. Technical Report.

3. (2022). 2022 Global Networking Trends Report, Cisco. Technical Report.

4. (2022). 2023 Global Internet Phenomena Report, Sandvine Inc.. Technical Report, Sandvine Intelligent Broadband Networks.

5. (2022). Ericsson Mobility Report, Ericsson. Technical Report.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Network Information Security Monitoring Under Artificial Intelligence Environment;International Journal of Information Security and Privacy;2024-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3