Detecting Faults at the Edge via Sensor Data Fusion Echo State Networks

Author:

Bruneo DarioORCID,De Vita FabrizioORCID

Abstract

The pervasive use of sensors and actuators in the Industry 4.0 paradigm has changed the way we interact with industrial systems. In such a context, modern frameworks are not only limited to the system telemetry but also include the detection of potentially harmful conditions. However, when the number of signals generated by a system is large, it becomes challenging to properly correlate the information for an effective diagnosis. The combination of Artificial Intelligence and sensor data fusion techniques is a valid solution to address this problem, implementing models capable of extracting information from a set of heterogeneous sources. On the other hand, the constrained resources of Edge devices, where these algorithms are usually executed, pose strict limitations in terms of memory occupation and models complexity. To overcome this problem, in this paper we propose an Echo State Network architecture which exploits sensor data fusion to detect the faults on a scale replica industrial plant. Thanks to its sparse weights structure, Echo State Networks are Recurrent Neural Networks models, which exhibit a low complexity and memory footprint, which makes them suitable to be deployed on an Edge device. Through the analysis of vibration and current signals, the proposed model is able to correctly detect the majority of the faults occurring in the industrial plant. Experimental results demonstrate the feasibility of the proposed approach and present a comparison with other approaches, where we show that our methodology is the best trade-off in terms of precision, recall, F1-score and inference time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3