Integrated Edge Deployable Fault Diagnostic Algorithm for the Internet of Things (IoT): A Methane Sensing Application

Author:

Kumar S. Vishnu1ORCID,Mary G. Aloy Anuja1,Mahdal Miroslav2ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi 600062, India

2. Department of Control Systems and Instrumentation, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava, Czech Republic

Abstract

The Internet of Things (IoT) is seen as the most viable solution for real-time monitoring applications. But the faults occurring at the perception layer are prone to misleading the data driven system and consume higher bandwidth and power. Thus, the goal of this effort is to provide an edge deployable sensor-fault detection and identification algorithm to reduce the detection, identification, and repair time, save network bandwidth and decrease the computational stress over the Cloud. Towards this, an integrated algorithm is formulated to detect fault at source and to identify the root cause element(s), based on Random Forest (RF) and Fault Tree Analysis (FTA). The RF classifier is employed to detect the fault, while the FTA is utilized to identify the source. A Methane (CH4) sensing application is used as a case-study to test the proposed system in practice. We used data from a healthy CH4 sensing node, which was injected with different forms of faults, such as sensor module faults, processor module faults and communication module faults, to assess the proposed model’s performance. The proposed integrated algorithm provides better algorithm-complexity, execution time and accuracy when compared to FTA or standalone classifiers such as RF, Support Vector Machine (SVM) or K-nearest Neighbor (KNN). Metrics such as Accuracy, True Positive Rate (TPR), Matthews Correlation Coefficient (MCC), False Negative Rate (FNR), Precision and F1-score are used to rank the proposed methodology. From the field experiment, RF produced 97.27% accuracy and outperformed both SVM and KNN. Also, the suggested integrated methodology’s experimental findings demonstrated a 27.73% reduced execution time with correct fault-source and less computational resource, compared to traditional FTA-detection methodology.

Funder

Ministry of Education, Youth and Sports, Czech Republic

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3