S-NER: A Concise and Efficient Span-Based Model for Named Entity Recognition

Author:

Yu Jie,Ji BinORCID,Li Shasha,Ma Jun,Liu Huijun,Xu Hao

Abstract

Named entity recognition (NER) is a task that seeks to recognize entities in raw texts and is a precondition for a series of downstream NLP tasks. Traditionally, prior NER models use the sequence labeling mechanism which requires label dependency captured by the conditional random fields (CRFs). However, these models are prone to cascade label misclassifications since a misclassified label results in incorrect label dependency, and so some following labels may also be misclassified. To address the above issue, we propose S-NER, a span-based NER model. To be specific, S-NER first splits raw texts into text spans and regards them as candidate entities; it then directly obtains the types of spans by conducting entity type classifications on span semantic representations, which eliminates the requirement for label dependency. Moreover, S-NER has a concise neural architecture in which it directly uses BERT as its encoder and a feed-forward network as its decoder. We evaluate S-NER on several benchmark datasets across three domains. Experimental results demonstrate that S-NER consistently outperforms the strongest baselines in terms of F1-score. Extensive analyses further confirm the efficacy of S-NER.

Funder

National Key Research and development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference48 articles.

1. HAMNER: Headword Amplified Multi-Span Distantly Supervised Method for Domain Specific Named Entity Recognition

2. TENER: Adapting Transformer Encoder for Named Entity Recognition;Yan;arXiv,2019

3. Bidirectional LSTM-CRF models for sequence tagging;Huang;arXiv,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3