Abstract
An individual’s likelihood of developing non-communicable diseases is often influenced by the types, intensities and duration of exposures at work. Job exposure matrices provide exposure estimates associated with different occupations. However, due to their time-consuming expert curation process, job exposure matrices currently cover only a subset of possible workplace exposures and may not be regularly updated. Scientific literature articles describing exposure studies provide important supporting evidence for developing and updating job exposure matrices, since they report on exposures in a variety of occupational scenarios. However, the constant growth of scientific literature is increasing the challenges of efficiently identifying relevant articles and important content within them. Natural language processing methods emulate the human process of reading and understanding texts, but in a fraction of the time. Such methods can increase the efficiency of both finding relevant documents and pinpointing specific information within them, which could streamline the process of developing and updating job exposure matrices. Named entity recognition is a fundamental natural language processing method for language understanding, which automatically identifies mentions of domain-specific concepts (named entities) in documents, e.g., exposures, occupations and job tasks. State-of-the-art machine learning models typically use evidence from an annotated corpus, i.e., a set of documents in which named entities are manually marked up (annotated) by experts, to learn how to detect named entities automatically in new documents. We have developed a novel annotated corpus of scientific articles to support machine learning based named entity recognition relevant to occupational substance exposures. Through incremental refinements to the annotation process, we demonstrate that expert annotators can attain high levels of agreement, and that the corpus can be used to train high-performance named entity recognition models. The corpus thus constitutes an important foundation for the wider development of natural language processing tools to support the study of occupational exposures.
Funder
H2020 Societal Challenges
Publisher
Public Library of Science (PLoS)
Reference102 articles.
1. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017;GBD 2017 Risk Factor Collaborators;Lancet,2018
2. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the global burden of disease study 2016;GBD 2016 Risk Factors Collaborators;Lancet,2017
3. Global and regional burden of disease and injury in 2016 arising from occupational exposures: A systematic analysis for the global burden of disease study 2016;GBD Occupational Risk Factors Collaborators;Occup Environ Med,2020
4. The global burden of occupational disease;L. Rushton;Curr Environ Health Rep,2017
5. Applying the exposome concept to working life health: The EU EPHOR project;A Pronk;Environ Epidemiol,2022