ProMatch: Semi-Supervised Learning with Prototype Consistency

Author:

Cheng Ziyu1,Wang Xianmin12ORCID,Li Jing1

Affiliation:

1. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510002, China

2. Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou 511442, China

Abstract

Recent state-of-the-art semi-supervised learning (SSL) methods have made significant advancements by combining consistency-regularization and pseudo-labeling in a joint learning paradigm. The core concept of these methods is to identify consistency targets (pseudo-labels) by selecting predicted distributions with high confidence from weakly augmented unlabeled samples. However, they often face the problem of erroneous high confident pseudo-labels, which can lead to noisy training. This issue arises due to two main reasons: (1) when the model is poorly calibrated, the prediction of a single sample may be overconfident and incorrect, and (2) propagating pseudo-labels from unlabeled samples can result in error accumulation due to the margin between the pseudo-label and the ground-truth label. To address this problem, we propose a novel consistency criterion called Prototype Consistency (PC) to improve the reliability of pseudo-labeling by leveraging the prototype similarities between labeled and unlabeled samples. First, we instantiate semantic-prototypes (centers of embeddings) and prediction-prototypes (centers of predictions) for each category using memory buffers that store the features of labeled examples. Second, for a given unlabeled sample, we determine the most similar semantic-prototype and prediction-prototype by assessing the similarities between the features of the unlabeled sample and the prototypes of the labeled samples. Finally, instead of using the prediction of the unlabeled sample as the pseudo-label, we select the most similar prediction-prototype as the consistency target, as long as the predicted category of the most similar prediction-prototype, the ground-truth category of the most similar semantic-prototype, and the ground-truth category of the most similar prediction-prototype are equivalent. By combining the PC approach with the techniques developed by the MixMatch family, our proposed ProMatch framework demonstrates significant performance improvements compared to previous algorithms on datasets such as CIFAR-10, CIFAR-100, SVHN, and Mini-ImageNet.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

CNKLSTISS

Scientific research project for Guangzhou University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust semi-supervised learning with reciprocal weighted mixing distribution alignment;Engineering Applications of Artificial Intelligence;2024-11

2. Brain-inspired semantic data augmentation for multi-style images;Frontiers in Neurorobotics;2024-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3