Brain-inspired semantic data augmentation for multi-style images

Author:

Wang Wei,Shang Zhaowei,Li Chengxing

Abstract

Data augmentation is an effective technique for automatically expanding training data in deep learning. Brain-inspired methods are approaches that draw inspiration from the functionality and structure of the human brain and apply these mechanisms and principles to artificial intelligence and computer science. When there is a large style difference between training data and testing data, common data augmentation methods cannot effectively enhance the generalization performance of the deep model. To solve this problem, we improve modeling Domain Shifts with Uncertainty (DSU) and propose a new brain-inspired computer vision image data augmentation method which consists of two key components, namely, using Robust statistics and controlling the Coefficient of variance for DSU (RCDSU) and Feature Data Augmentation (FeatureDA). RCDSU calculates feature statistics (mean and standard deviation) with robust statistics to weaken the influence of outliers, making the statistics close to the real values and improving the robustness of deep learning models. By controlling the coefficient of variance, RCDSU makes the feature statistics shift with semantic preservation and increases shift range. FeatureDA controls the coefficient of variance similarly to generate the augmented features with semantics unchanged and increase the coverage of augmented features. RCDSU and FeatureDA are proposed to perform style transfer and content transfer in the feature space, and improve the generalization ability of the model at the style and content level respectively. On Photo, Art Painting, Cartoon, and Sketch (PACS) multi-style classification task, RCDSU plus FeatureDA achieves competitive accuracy. After adding Gaussian noise to PACS dataset, RCDSU plus FeatureDA shows strong robustness against outliers. FeatureDA achieves excellent results on CIFAR-100 image classification task. RCDSU plus FeatureDA can be applied as a novel brain-inspired semantic data augmentation method with implicit robot automation which is suitable for datasets with large style differences between training and testing data.

Publisher

Frontiers Media SA

Reference62 articles.

1. Neurorobotic reinforcement learning for domains with parametrical uncertainty;Amaya;Front. Neurorobot,2023

2. Data augmentation generative adversarial networks;Antoniou;arXiv [Preprint],2017

3. “Computationally efficient robust sparse estimation in high dimensions,”;Balakrishnan,2017

4. “Unsupervised pixel-level domain adaptation with generative adversarial networks,”;Bousmalis;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016

5. Gan augmentation: augmenting training data using generative adversarial networks;Bowles;arXiv [Preprint].,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3