Research on the Combined Control Strategy of Low Temperature Charging and Heating of Lithium-Ion Power Battery Based on Adaptive Fuzzy Control

Author:

Min Haitao,Wang Boshi,Sun Weiyi,Zhang Zhaopu,Yu Yuanbin,Zhang Yanzhou

Abstract

A low temperature environment will lead to the decrease of chemistry reaction rate and increase of the internal resistance of the lithium battery. In addition, the excessive charging current will cause the lithium to separate out and even the permanent attenuation of battery capacity. In order to solve these problems, this paper proposes a low-temperature charging heating combined control strategy, which takes the temperature acceptable charging current of the battery at low temperature as the charging current constraint and the maximum output power of the system as the power constraint. Firstly, a scheme of combined charging and heating control system is put forward. Secondly, the low temperature charging control strategy based on adaptive fuzzy control is established and then the model is simulated and analyzed in MATLAB software. At last, a Chroma 72,001 charge and discharge tester is used to conduct a low temperature test on 18,650 lithium iron phosphate battery monomers. The results show that the low-temperature charging control strategy proposed in this paper has a more stable temperature control effect on the battery, the constant current charging time of the battery is reduced by 14% compared with the traditional threshold control method, and the overall charging energy consumption is reduced by 5.6%.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3