Research on multi-objective control strategy of thermal management system of pure electric vehicle at low temperature based on Q-learning algorithm

Author:

Zhan Sen1,Huang Yu1ORCID,Li Fei2,Yin Yanli1ORCID,Liu Chunsheng1ORCID

Affiliation:

1. Chongqing Key Laboratory of Urban Rail Transit System Integration and Control, Chongqing Jiaotong University, Chongqing, China

2. Zonsen Industrial Group Co., Ltd, Chongqing, China

Abstract

In low-temperature conditions, a reasonable control strategy for thermal management systems can effectively alleviate range anxiety in pure electric vehicles and improve their adaptability to various working conditions. To further enhance the adaptability of thermal management system control strategies in different working conditions, this paper proposes a multi-objective control strategy based on Q-learning algorithm. Firstly, a pure electric vehicle model based on power-thermal coupling is established. The accuracy of the model is validated by comparing the simulation results from combined Amesim and Matlab/Simulink simulations with experimental data. Secondly, taking into consideration the factors such as vehicle economy, powertrain performance, and cabin comfort, a novel control strategy utilizing the Q-learning algorithm for the thermal management system of pure electric vehicle is developed. Finally, the efficacy of Q-learning control strategy is analyzed by simulations conducted under NEDC and WLTC conditions, with an initial temperature of −20°C. The results showed that, compared to the rule-based control strategy in WLTC and NEDC working conditions, the comprehensive improvement effect of Q-learning control strategy is 9.35% and 10.76% respectively. Moreover, the Q-learning control strategy achieves 94.25% and 90.19% of the global optimal control effect obtained through DP. The results indicate that the proposed control strategy has good adaptability to different working conditions.

Funder

Chongqing Municipal Education Commission

Chongqing University State key Laboratory of Mechanical Transmission

Chongqing Municipal Science and Technology Commission

Chongqing Key Laboratory of Urban Rail Transit Vehicle System Integration and Control

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3