New HVAC Sustainability Index—TWI (Total Water Impact)

Author:

Santos Alexandre F.ORCID,Gaspar Pedro D.ORCID,de Souza Heraldo J. L.

Abstract

Sales of air conditioning are growing rapidly in buildings, more than tripling between 1990 and 2016. This energy use for air conditioning comes from a combination of rising temperatures, rising population and economic growth. Energy demand for climate control will triple by 2050, consuming more energy than that currently consumed altogether by the United States, the European Union and Japan. This increase in energy will directly impact water consumption, either to directly cool a condenser of an equipment or to serve indirectly as a basis for energy sources such as hydroelectric power that feed these heating, ventilation and air conditioning (HVAC) systems. Knowing the unique and growing importance of water, a new index, Total Water Impact (TWI) is presented, which allows a holistic comparison of the impact of water use on water, air and evaporative condensation climate systems. 200 and 500 TON (tons of refrigeration) air-cooled and water-cooled systems are theoretically compared to evaluate the general water consumption level. The TWI index is higher in the smallest water condensing system. That is, holistically, water consumption is higher in the water condensing system than in the air condensing system. Thus, this index provides a new insight about energy consumption and ultimately, about sustainability.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference19 articles.

1. Programa Hidrológico Mundialhttps://www.wwf.org.br/wwf_brasil/wwf_mundo/

2. Water Information Network System (WINS) by the International Hydrological Programme ofUnited Nations Educational, Scientific and Cultural Organization (UNESCO)http://ihp-wins.unesco.org/

3. World Water Development Report 2019https://www.unwater.org/publications/world-water-development-report-2019/

4. Anuário Estatístico,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3