Fog Computing for Control of Cyber-Physical Systems in Industry Using BCI

Author:

Rodríguez-Azar Paula Ivone1ORCID,Mejía-Muñoz Jose Manuel2ORCID,Cruz-Mejía Oliverio3ORCID,Torres-Escobar Rafael4ORCID,López Lucero Verónica Ruelas2ORCID

Affiliation:

1. Departamento de Ingeniería Industrial y Manufactura, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico

2. Departamento de Ingeniería Eléctrica, Instituto de Ingenieria y Tecnologia, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico

3. Departamento de Ingeniería Industrial, FES Aragón, Universidad Nacional Autónoma de México, Mexico 57171, Mexico

4. Facultad de Ingeneria, Universidad Anáhuac México, Mexico 52786, Mexico

Abstract

Brain-computer interfaces use signals from the brain, such as EEG, to determine brain states, which in turn can be used to issue commands, for example, to control industrial machinery. While Cloud computing can aid in the creation and operation of industrial multi-user BCI systems, the vast amount of data generated from EEG signals can lead to slow response time and bandwidth problems. Fog computing reduces latency in high-demand computation networks. Hence, this paper introduces a fog computing solution for BCI processing. The solution consists in using fog nodes that incorporate machine learning algorithms to convert EEG signals into commands to control a cyber-physical system. The machine learning module uses a deep learning encoder to generate feature images from EEG signals that are subsequently classified into commands by a random forest. The classification scheme is compared using various classifiers, being the random forest the one that obtained the best performance. Additionally, a comparison was made between the fog computing approach and using only cloud computing through the use of a fog computing simulator. The results indicate that the fog computing method resulted in less latency compared to the solely cloud computing approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3