Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network

Author:

Miao Minmin12ORCID,Hu Wenjun12,Yin Hongwei12,Zhang Ke12ORCID

Affiliation:

1. School of Information Engineering, Huzhou University, Huzhou 313000, China

2. Zhejiang Province Key Laboratory of Smart Management & Application of Modern Agricultural Resources, Huzhou University, Huzhou 313000, China

Abstract

EEG pattern recognition is an important part of motor imagery- (MI-) based brain computer interface (BCI) system. Traditional EEG pattern recognition algorithm usually includes two steps, namely, feature extraction and feature classification. In feature extraction, common spatial pattern (CSP) is one of the most frequently used algorithms. However, in order to extract the optimal CSP features, prior knowledge and complex parameter adjustment are often required. Convolutional neural network (CNN) is one of the most popular deep learning models at present. Within CNN, feature learning and pattern classification are carried out simultaneously during the procedure of iterative updating of network parameters; thus, it can remove the complicated manual feature engineering. In this paper, we propose a novel deep learning methodology which can be used for spatial-frequency feature learning and classification of motor imagery EEG. Specifically, a multilayer CNN model is designed according to the spatial-frequency characteristics of MI EEG signals. An experimental study is carried out on two MI EEG datasets (BCI competition III dataset IVa and a self-collected right index finger MI dataset) to validate the effectiveness of our algorithm in comparison with several closely related competing methods. Superior classification performance indicates that our proposed method is a promising pattern recognition algorithm for MI-based BCI system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3