Abstract
This paper introduces a new non-linear correlation analysis method based on a non-linear finite impulse response (NFIR) model to study and quantify the effects of ten soil properties on crop yield. Two versions of the NFIR model were implemented: NFIR-LN, accounting for both the linear and non-linear variability in the system, and NFIR-L, accounting for linear variability only. The performance of the NFIR models was compared with a non-linear random forest (RF) model, to predict oilseed rape (2013) and wheat (2014) yields in one field at Premslin, Germany. The ten soil properties were used as system inputs, whereas crop yield was the system output. Results demonstrated that the individual and total contribution of the soil properties on crop yield varied throughout the different cropping seasons, weather conditions, and crops. Both the NFIR-LN and RF models outperformed the NFIR-L model and explained up to 55.62% and 50.66% of the yield variation for years 2013 and 2014, respectively. The NFIR-LN and RF models performed equally during yield prediction, although the NFIR-LN model provided more consistent results through the two cropping seasons. Higher phosphorus and potassium contributions to the yield were calculated with the NFIR-LN model, suggesting this method outperforms the RF model.
Funder
Department for Environment, Food and Rural Affairs, UK Government
Subject
Earth-Surface Processes,Soil Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献