Arbuscular Mycorrhizal Fungi Improve Growth and Phosphate Nutrition of Acacia seyal (Delile) under Saline Conditions

Author:

Manga Anicet Georges BrunoORCID,Ndiaye Malick,Ndiaye Mame Arama Fall,Sané Seyni,Diop Tahir Abdoulaye,Diatta André AmakoboORCID,Bassene César,Min DoohongORCID,Battaglia MartinORCID,Harrison Matthew TomORCID

Abstract

Many plant species adapted to semi-arid environments are grown in the Sahelian region in northern Africa. One such species is Acacia seyal (Delile), a multipurpose leguminous tree grown in various agroecological zones, including saline soils. These challenging arid and semi-arid environments harbor a diversity of arbuscular mycorrhizal fungi (AMF) communities that can develop symbiotic associations with plants to improve their hydromineral nutrition. This study compared the effects of native AMF communities isolated from semi-arid sites (high, moderate, and low salinity zones Ndiafate, Ngane, and Bambey, respectively) and the AMF Rhizoglomus aggregatum on the development and phosphate nutrition of A. seyal seedlings subject to three salinity treatments (0, 340, and 680 mM). Plant height, dry matter weight of the shoots and roots, and phosphorus uptake from the soil were measured. Plants inoculated with AMF native species from each site that were provided with up to 340 mM of NaCl had greater shoot height than plants grown under 680 mM salinity. At NaCl concentrations above 340 mM, shoot and root development of A. seyal seedlings diminished. However, dry matter production of shoots (7%) and roots (15%) improved following AMF inoculation compared with the control (respectively 0.020 and 0.07 g for shoots and roots). When inoculated with AMF isolates from the high salinity zone (Ndiafate), phosphate content/nutrition was increased by 10% around 30 days after inoculation compared with non-inoculated seedlings (2.84 mg/kg of substrate). These results demonstrate that native AMF inoculants are capable of helping plants withstand environmental constraints, especially those exposing plants to harsh climatic conditions. We discuss insights on how AMF influences the interplay between soil phosphorus and perceived salinity that may have implications for broader relationships between plants and symbiotic fungi.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3