Mycorrhizae set the stage for plants to produce a higher production of biomolecules and stress-related metabolites: a sustainable alternative of agrochemicals to enhance the quality and yield of beetroot (Beta vulgaris L.)

Author:

Yadav Vinod Kumar,Kumar Deepesh,Jha Radha Krishna,Bairwa Rakesh Kumar,Singh Rajan,Mishra Gaurav,Singh Jyoti Prakash,Kumar Adarsh,Vinesh Banoth,Jayaswall Kuldip,Rai Abhishek Kumar,Singh Arvind Nath,Kumar Sanjay,Rajavat Mahendra Vikram Singh,Jayaswal Deepanshu

Abstract

Population explosions, environmental deprivation, and industrial expansion led to an imbalanced agricultural system. Non-judicial uses of agrochemicals have decreased agrodiversity, degraded agroecosystems, and increased the cost of farming. In this scenario, a sustainable agriculture system could play a crucial role; however, it needs rigorous study to understand the biological interfaces within agroecosystems. Among the various biological components with respect to agriculture, mycorrhizae could be a potential candidate. Most agricultural crops are symbiotic with arbuscular mycorrhizal fungi (AMF). In this study, beetroot has been chose to study the effect of different AMFs on various parameters such as morphological traits, biochemical attributes, and gene expression analysis (ALDH7B4 and ALDH3I1). The AMF Gm-Funneliformis mosseae (Glomus mosseae), Acaulospora laevis, and GG-Gigaspora gigantean were taken as treatments to study the effect on the above-mentioned parameters in beetroot. We observed that among all the possible combinations of mycorrhizae, Gm+Al+GG performed best, and the Al-alone treatment was found to be a poor performer with respect to all the studied parameters. This study concluded that the more the combinations of mycorrhizae, the better the results will be. However, the phenomenon depends on the receptivity, infectivity, and past nutrient profile of the soil.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3