Teasing Apart Silvopasture System Components Using Machine Learning for Optimization

Author:

Kharel Tulsi P.ORCID,Ashworth Amanda J.ORCID,Owens Phillip R.,Philipp Dirk,Thomas Andrew L.,Sauer Thomas J.

Abstract

Silvopasture systems combine tree and livestock production to minimize market risk and enhance ecological services. Our objective was to explore and develop a method for identifying driving factors linked to productivity in a silvopastoral system using machine learning. A multi-variable approach was used to detect factors that affect system-level output (i.e., plant production (tree and forage), soil factors, and animal response based on grazing preference). Variables from a three-year (2017–2019) grazing study, including forage, tree, soil, and terrain attribute parameters, were analyzed. Hierarchical variable clustering and random forest model selected 10 important variables for each of four major clusters. A stepwise multiple linear regression and regression tree approach was used to predict cattle grazing hours per animal unit (h ha−1 AU−1) using 40 variables (10 per cluster) selected from 130 total variables. Overall, the variable ranking method selected more weighted variables for systems-level analysis. The regression tree performed better than stepwise linear regression for interpreting factor-level effects on animal grazing preference. Cattle were more likely to graze forage on soils with Cd levels <0.04 mg kg−1 (126% greater grazing hours per AU), soil Cr <0.098 mg kg−1 (108%), and a SAGA wetness index of <2.7 (57%). Cattle also preferred grazing (88%) native grasses compared to orchardgrass (Dactylis glomerata L.). The result shows water flow within the landscape position (wetness index), and associated metals distribution may be used as an indicator of animal grazing preference. Overall, soil nutrient distribution patterns drove grazing response, although animal grazing preference was also influenced by aboveground (forage and tree), soil, and landscape attributes. Machine learning approaches helped explain pasture use and overall drivers of grazing preference in a multifunctional system.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3