Advances in Humidity Nanosensors and Their Application: Review

Author:

Ku Chin-An1,Chung Chen-Kuei1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan

Abstract

As the technology revolution and industrialization have flourished in the last few decades, the development of humidity nanosensors has become more important for the detection and control of humidity in the industry production line, food preservation, chemistry, agriculture and environmental monitoring. The new nanostructured materials and fabrication in nanosensors are linked to better sensor performance, especially for superior humidity sensing, following the intensive research into the design and synthesis of nanomaterials in the last few years. Various nanomaterials, such as ceramics, polymers, semiconductor and sulfide, carbon-based, triboelectrical nanogenerator (TENG), and MXene, have been studied for their potential ability to sense humidity with structures of nanowires, nanotubes, nanopores, and monolayers. These nanosensors have been synthesized via a wide range of processes, including solution synthesis, anodization, physical vapor deposition (PVD), or chemical vapor deposition (CVD). The sensing mechanism, process improvement and nanostructure modulation of different types of materials are mostly inexhaustible, but they are all inseparable from the goals of the effective response, high sensitivity and low response–recovery time of humidity sensors. In this review, we focus on the sensing mechanism of direct and indirect sensing, various fabrication methods, nanomaterial geometry and recent advances in humidity nanosensors. Various types of capacitive, resistive and optical humidity nanosensors are introduced, alongside illustration of the properties and nanostructures of various materials. The similarities and differences of the humidity-sensitive mechanisms of different types of materials are summarized. Applications such as IoT, and the environmental and human-body monitoring of nanosensors are the development trends for futures advancements.

Funder

Ministry of Science and Technology (MOST), Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3