Fault Diagnosis of Rolling Bearing Based on a Priority Elimination Method

Author:

Xiang Chuan1ORCID,Zhou Jiahui1,Han Bing2,Li Weichen1,Zhao Hongge1

Affiliation:

1. College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China

2. National Engineering Research Center of Ship & Shipping Control System, Shanghai Ship and Shipping Research Institute Co., Ltd., Shanghai 200135, China

Abstract

Aiming at the fault diagnosis accuracy of rolling bearings is not high enough, and unknown faults cannot be correctly identified. A priority elimination (PE) method is proposed in this paper. First, the priority diagnosis sequence of faults was determined by comparing the ratios of the inter-class distance to the intra-class distance for all faults. Then, the model training and fault diagnosis were carried out in order of the priority sequence, and the samples of the fault that had been identified were eliminated from the data set until all faults were diagnosed. For the diagnosis model, the stacked sparse auto-encoder network (SSAE) was selected to extract the features of the vibration signal. The extreme gradient boosting algorithm (XGBoost) was chosen to identify the fault type. Finally, the method was tested and verified by experimental data and compared with classical algorithms. Research results indicate the following: (1) with the addition of PE based on SSAE-XGBoost, the fault diagnosis accuracy can be improved from 96.3% to 99.27%, which is higher than other methods; (2) for the test set with the samples of unknown faults, the diagnosis accuracy of SSAE-XGBoost with PE can reach 92.34%, which is nearly 6% higher than that without PE and is also obviously higher than other classical fault diagnosis methods with or without PE. The PE method can not only improve the diagnosis accuracy of faults but also identify unknown faults, which provides a new method and way for fault diagnosis.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3