Examination of the Accuracy of Movement Tracking Systems for Monitoring Exercise for Musculoskeletal Rehabilitation

Author:

Obukhov Artem1ORCID,Volkov Andrey1ORCID,Pchelintsev Alexander2ORCID,Nazarova Alexandra1,Teselkin Daniil1,Surkova Ekaterina1,Fedorchuk Ivan1

Affiliation:

1. Laboratory of VR Simulators, Tambov State Technical University, 392000 Tambov, Russia

2. Department of Higher Mathematics, Tambov State Technical University, 392000 Tambov, Russia

Abstract

When patients perform musculoskeletal rehabilitation exercises, it is of great importance to observe the correctness of their performance. The aim of this study is to increase the accuracy of recognizing human movements during exercise. The process of monitoring and evaluating musculoskeletal rehabilitation exercises was modeled using various tracking systems, and the necessary algorithms for processing information for each of the tracking systems were formalized. An approach to classifying exercises using machine learning methods is presented. Experimental studies were conducted to identify the most accurate tracking systems (virtual reality trackers, motion capture, and computer vision). A comparison of machine learning models is carried out to solve the problem of classifying musculoskeletal rehabilitation exercises, and 96% accuracy is obtained when using multilayer dense neural networks. With the use of computer vision technologies and the processing of a full set of body points, the accuracy of classification achieved is 100%. The hypotheses on the ranking of tracking systems based on the accuracy of positioning of human target points, the presence of restrictions on application in the field of musculoskeletal rehabilitation, and the potential to classify exercises are fully confirmed.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3