A Two-Stage Low-Altitude Remote Sensing Papaver Somniferum Image Detection System Based on YOLOv5s+DenseNet121

Author:

Wang QianORCID,Wang Chunshan,Wu Huarui,Zhao Chunjiang,Teng Guifa,Yu Yajie,Zhu Huaji

Abstract

Papaver somniferum (opium poppy) is not only a source of raw material for the production of medical narcotic analgesics but also the major raw material for certain psychotropic drugs. Therefore, it is stipulated by law that the cultivation of Papaver somniferum must be authorized by the government under stringent supervision. In certain areas, unauthorized and illicit Papaver somniferum cultivation on private-owned lands occurs from time to time. These illegal Papaver somniferum cultivation sites are dispersedly-distributed and highly-concealed, therefore becoming a tough problem for government supervision. The low-altitude inspection of Papaver somniferum cultivation by unmanned aerial vehicles has the advantages of high efficiency and time saving, but the large amount of image data collected needs to be manually screened, which not only consumes a lot of manpower and material resources but also easily causes omissions. In response to the above problems, this paper proposed a two-stage (target detection and image classification) method for the detection of Papaver somniferum cultivation sites. In the first stage, the YOLOv5s algorithm was used to detect Papaver somniferum images for the purpose of identifying all the suspicious Papaver somniferum images from the original data. In the second stage, the DenseNet121 network was used to classify the detection results from the first stage, so as to exclude the targets other than Papaver somniferum and retain the images containing Papaver somniferum only. For the first stage, YOLOv5s achieved the best overall performance among mainstream target detection models, with a Precision of 97.7%, Recall of 94.9%, and mAP of 97.4%. For the second stage, DenseNet121 with pre-training achieved the best overall performance, with a classification accuracy of 97.33% and a Precision of 95.81%. The experimental comparison results between the one-stage method and the two-stage method suggest that the Recall of the two methods remained the same, but the two-stage method reduced the number of falsely detected images by 73.88%, which greatly reduces the workload for subsequent manual screening of remote sensing Papaver somniferum images. The achievement of this paper provides an effective technical means to solve the problem in the supervision of illicit Papaver somniferum cultivation.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Hebei Province Key Research and Development Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-temporal change detection of asbestos roofing: A hybrid object-based deep learning framework with post-classification structure;Remote Sensing Applications: Society and Environment;2024-04

2. Fast Opium Poppy Detection in Unmanned Aerial Vehicle (UAV) Imagery Based on Deep Neural Network;Drones;2023-08-30

3. A Study on Scratch Defect Detection of Ceramic Blades Based on Improved YOLOv5;2023 4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE);2023-08-25

4. Extraction of Citrus Trees from UAV Remote Sensing Imagery Using YOLOv5s and Coordinate Transformation;Remote Sensing;2022-08-26

5. Skin Cancer Classification in Dermatological Images based on a Dense Hybrid Algorithm;2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON);2022-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3