Fast Opium Poppy Detection in Unmanned Aerial Vehicle (UAV) Imagery Based on Deep Neural Network

Author:

Zhang Zhiqi12ORCID,Xia Wendi1ORCID,Xie Guangqi12,Xiang Shao2ORCID

Affiliation:

1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China

2. State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China

Abstract

Opium poppy is a medicinal plant, and its cultivation is illegal without legal approval in China. Unmanned aerial vehicle (UAV) is an effective tool for monitoring illegal poppy cultivation. However, targets often appear occluded and confused, and it is difficult for existing detectors to accurately detect poppies. To address this problem, we propose an opium poppy detection network, YOLOHLA, for UAV remote sensing images. Specifically, we propose a new attention module that uses two branches to extract features at different scales. To enhance generalization capabilities, we introduce a learning strategy that involves iterative learning, where challenging samples are identified and the model’s representation capacity is enhanced using prior knowledge. Furthermore, we propose a lightweight model (YOLOHLA-tiny) using YOLOHLA based on structured model pruning, which can be better deployed on low-power embedded platforms. To evaluate the detection performance of the proposed method, we collect a UAV remote sensing image poppy dataset. The experimental results show that the proposed YOLOHLA model achieves better detection performance and faster execution speed than existing models. Our method achieves a mean average precision (mAP) of 88.2% and an F1 score of 85.5% for opium poppy detection. The proposed lightweight model achieves an inference speed of 172 frames per second (FPS) on embedded platforms. The experimental results showcase the practical applicability of the proposed poppy object detection method for real-time detection of poppy targets on UAV platforms.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Scientific Research Foundation for Doctoral Program of Hubei University of Technology

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3