From Forest Dynamics to Wetland Siltation in Mountainous Landscapes: A RS-Based Framework for Enhancing Erosion Control

Author:

Hernández-Romero Gonzalo,Álvarez-Martínez Jose ManuelORCID,Pérez-Silos Ignacio,Silió-Calzada Ana,Vieites David R.,Barquín Jose

Abstract

Human activities have caused a significant change in the function and services that ecosystems have provided to society since historical times. In mountainous landscapes, the regulation of services such as water quality or erosion control has been impacted by land use and land cover (LULC) changes, especially the loss and fragmentation of forest patches. In this work, we develop a Remote Sensing (RS)-based modelling approach to identify areas for the implementation of nature-based solutions (NBS) (i.e., natural forest conservation and restoration) that allow reducing the vulnerability of aquatic ecosystems to siltation in mountainous regions. We used time series Landsat 5TM, 7ETM+, 8OLI and Sentinel 2A/2B MSI (S2) imagery to map forest dynamics and wetland distribution in Picos de Europa National Park (Cantabrian Mountains, northern Spain). We fed RS-based models with detailed in situ information based on photo-interpretation and fieldwork completed from 2017 to 2021. We estimated a forest cover increase rate of 2 ha/year comparing current and past LULC maps against external validation data. We applied this forest gain to a scenario generator model to derive a 30-year future LULC map that defines the potential forest extent for the study area in 2049. We then modelled the distribution of wetlands to identify the areas with the greatest potential for moisture accumulation. We used an S2 mosaic and topography-derived data such as the slope and topographic wetness index (TWI), which indicate terrain water accumulation. Overall accuracy scores reached values of 86% for LULC classification and 61% for wetland mapping. At the same time, we obtained the potential erosion using the NetMap software to identify potential sediment production, transport and deposition areas. Finally, forest dynamics, wetland distribution and potential erosion were combined in a multi-criteria analysis aiming to reduce the amount of sediment reaching selected wetlands. We achieved this by identifying the most suitable locations for the conservation and restoration of natural forests on slopes and in riparian areas, which may reduce the risk of soil erosion and maximise sediment filtering, respectively. The results show a network pattern for forest management that would allow for controlling erosion effects across space and time at three levels: one, by reducing the load that originates upslope in the absence of forest cover; two, by intersecting runoff at watercourses related to sediment transport; and three, by a lack of former barriers, by trapping erosion near to the receiving wetland systems, main river axes and contributing streams. In conclusion, the proposed methodology, which could be transferred to other mountain regions, allows to optimise investment for erosion prevention and wetland conservation by using only very specific areas of the landscape for habitat management (e.g., for NBS implementation).

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference167 articles.

1. Integrated Water Resources Management: A Reassessment

2. Servicios Ecosistémicos: Fundamentos desde el Manejo de Cuencashttps://agua.org.mx/wp-content/uploads/2018/05/Servicios-ecosistémicos-fundamentos-desde-el-manejo-de-cuencas.pdf

3. Water Management, Water Security and Climate Change Adaptation: Early Impacts and Essential Responses;Sadoff,2009

4. Large-scale afforestation for ecosystem service provisioning: learning from the past to improve the future

5. Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3