A Deep Learning Approach to Estimate Halimeda incrassata Invasive Stage in the Mediterranean Sea

Author:

Muntaner-Gonzalez Caterina1ORCID,Martin-Abadal Miguel1ORCID,Gonzalez-Cid Yolanda1ORCID

Affiliation:

1. Department of Mathematics and Computer Science, University of the Balearic Islands, Carretera de Valldemossa Km. 7.5, 07122 Palma, Spain

Abstract

Invasive algae, such as Halimeda incrassata, alter marine biodiversity in the Mediterranean Sea. Monitoring these changes over time is crucial for assessing the health of coastal environments and preserving local species. However, this monitoring process is resource-intensive, requiring taxonomic experts and significant amounts of time. Recently, deep learning approaches have attempted to automate the detection of certain seagrass species like Posidonia oceanica and Halophila ovalis from two different strategies: seagrass coverage estimation and detection. This work presents a novel approach to detect Halimeda incrassata and estimate its coverage, independently of the invasion stage of the algae. Two merging methods based on the combination of the outputs of an object detection network (YOLOv5) and a semantic segmentation network (U-net) are developed. The system achieves an F1-scoreof 84.2% and a Coverage Error of 5.9%, demonstrating its capability to accurately detect Halimeda incrassata and estimate its coverage independently of the invasion stage.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3