Numerical and Experimental Investigations on Reducing Particle Accumulation for SCR-deNOx Facilities

Author:

Zeng ,Yuan ,Wang

Abstract

Selective catalytic reduction (SCR) is widely used to remove nitrogen oxides (NOx) in the flue gas of coal-fired power plants. The accumulation of ash particles inside the SCR-deNOx facility will increase the risk of catalyst deactivation or even damage. This paper presents the numerical and experimental investigations on the particle dispersal approach for the SCR-deNOx facility of a 1000 MW coal-fired power plant. The accumulation of different-sized particles is evaluated based on computational fluid dynamics (CFD) simulations. To prevent particles from accumulation, an optimized triangular deflector is proposed and attempts are made to find out the optimal installing position of the deflector. For the π-type SCR-deNOx facilities, the particle accumulation predominantly occurred on one side of the catalysts’ entrance, which corresponds to the inner side of the wedge-shaped turning. It is indicated that particles larger than 8.8 × 10−2 mm are responsible for the significant accumulation. The triangular deflector is proved to be an effective way to reduce particle accumulation and is found most efficient when it is installed at the high-speed area of the vertical duct. Flow model test (FMT) is carried out to validate the dispersal effect for the particle with relatively large sizes and the optimal installing position of the triangular deflector.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3