Evaluating the Effect of Wheel Polygons on Dynamic Track Performance in High-Speed Railway Systems Using Co-Simulation Analysis

Author:

Song ,Du ,Zhang ,Sun

Abstract

With increases in train speed and traffic density, problems due to wheel polygons and those caused by wheel–rail impacts will increase accordingly, which will affect train operational safety and passenger ride comfort. This paper investigates the effects of polygonal wheels on the dynamic performance of the track in a high-speed railway system. The wheel–rail interaction forces caused by wheel polygons are determined using a dynamic vehicle–track model, and the results are entered into a slab track finite element model. The influence of the harmonic order and out-of-roundness (OOR) amplitude of wheel polygons on the transient dynamic characteristics of the track(von Mises equivalent stress, displacement, and acceleration) is examined under high-speed conditions. The results indicate that the vibration acceleration and von Mises equivalent stress of the rail increase in proportion to the harmonic order and the OOR amplitude and velocity of a polygonized wheel. The vibration displacement of the rail first increases and then decreases with a change in the harmonic order, and reaches a maximum at the ninth order. The dynamic responses of the concrete slab layer, cement-asphalt layer, and support layer increase linearly with the harmonic order and amplitude of wheel polygons and decrease from top to bottom. Through a combination of numerical simulations and real-time monitoring of rail vibrations, this study provides guidance on potential sensor locations to identify polygonized wheels before they fail.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3