Deep-Learning-Based Defective Bean Inspection with GAN-Structured Automated Labeled Data Augmentation in Coffee Industry

Author:

Chou Yung-ChienORCID,Kuo Cheng-JuORCID,Chen Tzu-TingORCID,Horng Gwo-JiunORCID,Pai Mao-YuanORCID,Wu Mu-EnORCID,Lin Yu-ChuanORCID,Hung Min-HsiungORCID,Su Wei-TsungORCID,Chen Yi-ChungORCID,Wang Ding-ChauORCID,Chen Chao-ChunORCID

Abstract

In the production process from green beans to coffee bean packages, the defective bean removal (or in short, defect removal) is one of most labor-consuming stages, and many companies investigate the automation of this stage for minimizing human efforts. In this paper, we propose a deep-learning-based defective bean inspection scheme (DL-DBIS), together with a GAN (generative-adversarial network)-structured automated labeled data augmentation method (GALDAM) for enhancing the proposed scheme, so that the automation degree of bean removal with robotic arms can be further improved for coffee industries. The proposed scheme is aimed at providing an effective model to a deep-learning-based object detection module for accurately identifying defects among dense beans. The proposed GALDAM can be used to greatly reduce labor costs, since the data labeling is the most labor-intensive work in this sort of solutions. Our proposed scheme brings two main impacts to intelligent agriculture. First, our proposed scheme is can be easily adopted by industries as human effort in labeling coffee beans are minimized. The users can easily customize their own defective bean model without spending a great amount of time on labeling small and dense objects. Second, our scheme can inspect all classes of defective beans categorized by the SCAA (Specialty Coffee Association of America) at the same time and can be easily extended if more classes of defective beans are added. These two advantages increase the degree of automation in the coffee industry. The prototype of the proposed scheme was developed for studying integrated tests. Testing results of a case study reveal that the proposed scheme can efficiently and effectively generate models for identifying defective beans with accuracy and precision values up to 80 % .

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of the Physical Characteristics and Defects of Green Coffee Beans That Influence the Sensory Notes Using Machine Learning Models;Processes;2023-12-20

2. Lightweight Deep Convolution Neural Network for Green Coffee Bean Defects Detection;2023 IEEE 6th International Conference on Knowledge Innovation and Invention (ICKII);2023-08-11

3. Comparative Analysis of Lightweight Pre-Trained CNN Models for Coffee Bean Roasting Level Identification;2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE);2023-08-02

4. Coffee biorefinery: The main trends associated with recovering valuable compounds from solid coffee residues;Journal of Cleaner Production;2023-08

5. Metal surface defects segmentation method using cycle generative adversarial networks on small datasets;Fourteenth International Conference on Graphics and Image Processing (ICGIP 2022);2023-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3