Abstract
Poisson distributions have the characteristic of equality between their variance and mean values. By constructing a calculation model of the temporal variance and spatial variance, the relationship between the variance and mean values of lidar analog data and photon-counting data can be analyzed. The calculation results show that the photon-counting data from far field have the distribution property of equality between the variances and the corresponding mean values, while the analog data for the whole probing traces do not. In this paper, by analyzing the distribution properties of the spatial variance and temporal variance of lidar data, the dead time of photon-counting data was estimated, and the threshold voltage of the photon-counting system and the linear working range of photomultiplier tube were evaluated. The results show that the linear working range of the high voltage for the photomultiplier tube in the ultraviolet elastic scanning lidar is between −500 V and −1000 V, and the dead time and threshold voltage of the photon-counting system in the Licel transient recorder are 3.488 ns and 1.20 mV, respectively. Meanwhile, a novel gluing method between analog data and photon-counting data is presented, based on the calculation results of the variance distribution of lidar data. The linear transfer coefficients were determined by minimizing the differences between the variance and mean of the transformed photon-counting data in the near filed with high signal to noise ratio. The glued data were distributed to express the atmospheric conditions uniformly.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献