Affiliation:
1. Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), School of Precision Instruments and Opto-Electronic Engineering, Tianjin University, Tianjin 300072, China
2. School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
Abstract
Lidar is important active remote sensing equipment in the field of atmospheric environment detection. However, the detection range of lidar is severely limited by the dynamic range of photodetectors. To solve this problem, atmospheric lidars are often equipped with two or more channels to receive signals from different altitude ranges, where gluing the multi-channel echo signals becomes a key issue for accurate data inversion. In this paper, a multi-channel signal gluing algorithm based on the Improved Gray Wolf Optimizer (IGWO) and Neighborhood Rough Set (NRS), named IGWO-RSD, is proposed. The fitness function F is formed by three objective functions: correlation coefficient R, regression stability coefficient S and mean fit deviation D. All three objective functions are obtained from the data itself and do not rely on prior information. The weights of the objective functions R, S and D are pre-trained by NRS, and IGWO is used to optimize the fitness function F. With ground-based aerosol lidar data, all-day signal gluing experiments are performed, where IGWO-RSD demonstrates obvious advantages in stability, accuracy and applicability in lidar signal processing compared with NRSWNSGA-II.
Funder
National Natural Science Foundation of China
Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology
Subject
General Earth and Planetary Sciences