Tribological Behavior of Carbon-Based Nanomaterial-Reinforced Nickel Metal Matrix Composites

Author:

Patil AmitORCID,Walunj Ganesh,Ozdemir FurkanORCID,Gupta Rajeev KumarORCID,Borkar Tushar

Abstract

Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) with exceptional mechanical, thermal, chemical, and electrical properties are enticing reinforcements for fabricating lightweight, high-strength, and wear-resistant metal matrix composites with superior mechanical and tribological performance. Nickel–carbon nanotube composite (Ni-CNT) and nickel–graphene nanoplatelet composite (Ni-GNP) were fabricated via mechanical milling followed by the spark plasma sintering (SPS) technique. The Ni-CNT/GNP composites with varying reinforcement concentrations (0.5, 2, and 5 wt%) were ball milled for twelve hours to explore the effect of reinforcement concentration and its dispersion in the nickel microstructure. The effect of varying CNT/GNP concentration on the microhardness and the tribological behavior was investigated and compared with SPS processed monolithic nickel. Ball-on-disc tribological tests were performed to determine the effect of different structural morphologies of CNTs and GNPs on the wear performance and coefficient of friction of these composites. Experimental results indicate considerable grain refinement and improvement in the microhardness of these composites after the addition of CNTs/GNPs in the nickel matrix. In addition, the CNTs and GNPs were effective in forming a lubricant layer, enhancing the wear resistance and lowering the coefficient of friction during the sliding wear test, in contrast to the pure nickel counterpart. Pure nickel demonstrated the highest CoF of ~0.9, Ni-0.5CNT and Ni-0.5GNP exhibited a CoF of ~0.8, whereas the lowest CoF of ~0.2 was observed for Ni-2CNT and Ni-5GNP composites. It was also observed that the uncertainty of wear resistance and CoF in both the CNT/GNP-reinforced composites increased when loaded with higher reinforcement concentrations. The wear surface was analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis to elucidate the wear mechanism in these composites.

Funder

Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3