Dual Attention-Guided Multiscale Dynamic Aggregate Graph Convolutional Networks for Skeleton-Based Human Action Recognition

Author:

Hu ZeyuanORCID,Lee Eung-Joo

Abstract

Traditional convolution neural networks have achieved great success in human action recognition. However, it is challenging to establish effective associations between different human bone nodes to capture detailed information. In this paper, we propose a dual attention-guided multiscale dynamic aggregate graph convolution neural network (DAG-GCN) for skeleton-based human action recognition. Our goal is to explore the best correlation and determine high-level semantic features. First, a multiscale dynamic aggregate GCN module is used to capture important semantic information and to establish dependence relationships for different bone nodes. Second, the higher level semantic feature is further refined, and the semantic relevance is emphasized through a dual attention guidance module. In addition, we exploit the relationship of joints hierarchically and the spatial temporal correlations through two modules. Experiments with the DAG-GCN method result in good performance on the NTU-60-RGB+D and NTU-120-RGB+D datasets. The accuracy is 95.76% and 90.01%, respectively, for the cross (X)-View and X-Subon the NTU60dataset.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference43 articles.

1. A Video Representation Method Based on Multi-View Structure Preserving Embedding for Action Retrieval

2. An end-to-end deep learning model for human activity recognition from highly sparse body sensor data in Internet of Medical Things environment;Hassan;J. Supercomput.,2008

3. Open Pose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields;Cao;IEEE Trans. Pattern Anal. Mach. Intell.,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3