Abstract
<abstract><p>Spurt upsurge in violent protest and armed conflict in populous, civil areas has upstretched momentous concern worldwide. The unrelenting strategy of the law enforcement agencies focuses on thwarting the conspicuous impact of violent events. Increased surveillance using a widespread visual network supports the state actors in maintaining vigilance. Minute, simultaneous monitoring of numerous surveillance feeds is a workforce-intensive, idiosyncratic, and otiose method. Significant advancements in Machine Learning (ML) show potential in realizing precise models to detect suspicious activities in the mob. Existing pose estimation techniques have privations in detecting weapon operation activity. The paper proposes a comprehensive, customized human activity recognition approach using human body skeleton graphs. The VGG-19 backbone extracted 6600 body coordinates from the customized dataset. The methodology categorizes human activities into eight classes experienced during violent clashes. It facilitates alarm triggers in a specific activity, i.e., stone pelting or weapon handling while walking, standing, and kneeling is considered a regular activity. The end-to-end pipeline presents a robust model for multiple human tracking, mapping a skeleton graph for each person in consecutive surveillance video frames with the improved categorization of suspicious human activities, realizing effective crowd management. LSTM-RNN Network, trained on a customized dataset superimposed with Kalman filter, attained 89.09% accuracy for real-time pose identification.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献