Author:
Cao Nan,Tang Tao,Gao Chunhai
Abstract
Transfer synchronization is an important issue in timetable scheduling for an urban rail transit system, especially a cross-platform transfer. In this paper, we aim to optimize the performance of transfer throughout the daily operation of an urban rail transit system. The daily operation is divided into multiple time periods and each time period has a specific headway to fulfill time varied passenger demand. At the same time, the turn-back process of trains should also be considered for a real operation. Therefore, our work enhances the base of the transfer synchronization model taking into account time-dependent passenger demand and utilization of trains. A mixed integer programming model is developed to obtain an optimal timetable, providing a smooth transfer for cross-transfer platform and minimizing the transfer waiting time for all transfer passengers from different directions with consideration of timetable symmetry. By adjusting the departure time of trains based on a predetermined timetable, this transfer optimization model is solved through a genetic algorithm. The proposed model and algorithm are utilized for a real transfer problem in Beijing and the results demonstrate a significant reduction in transfer waiting time.
Funder
Beijing Postdoctoral Research Foundation
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献