Solar Photocatalytic Activity of Ba-Doped ZnO Nanoparticles: The Role of Surface Hydrophilicity

Author:

Hamrouni Abdessalem12,Moussa Marwa1,Fessi Nidhal13,Palmisano Leonardo4ORCID,Ceccato Riccardo5ORCID,Rayes Ali12,Parrino Francesco5ORCID

Affiliation:

1. Laboratory of Catalysis and Materials for the Environment and Processes LRCMEP (LR19ES08), Faculty of Sciences of Gabès, University of Gabès, University Campus Erriadh City, Gabès 6072, Tunisia

2. Department of Chemical Engineering-Processes, National Engineering School of Gabès, Omar El Khateb Avenue, Zrig, Gabes 6029, Tunisia

3. Laboratoire d’Automatique et de Génie des Procédés (LAGEPP), University of Lyon, UMR 5007 CNRS, University Claude Bernard Lyon 1, 69622 Villeurbanne, France

4. Department of Engineering, University of Palermo, Viale Delle Scienze Ed. 6, 90128 Palermo, Italy

5. Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy

Abstract

Bare zinc oxide (ZnO) and Ba-doped ZnO (BZO) samples were prepared by using a simple precipitation method. The effects of Barium doping on the structural, morphological, and optoelectronic properties, as well as on the physico-chemical features of the surface were investigated and correlated with the observed photocatalytic activity under natural solar irradiation. The incorporation of Ba2+ ions into the ZnO structure increased the surface area by ca. 14 times and enhanced the hydrophilicity with respect to the bare sample, as demonstrated by infrared spectroscopy and contact angle measurements. The surface hydrophilicity was correlated with the enhanced defectivity of the doped sample, as indicated by X-ray diffraction, Raman, and fluorescence spectroscopies. The resulting higher affinity with water was, for the first time, invoked as an important factor justifying the superior photocatalytic performance of BZO compared to the undoped one, in addition to the slightly higher separation of the photoproduced pairs, an effect that has already been reported in literature. In particular, observed kinetic constants values of 8∙10−3 and 11.3∙10−3 min−1 were determined for the ZnO and BZO samples, respectively, by assuming first order kinetics. Importantly, Ba doping suppressed photocorrosion and increased the stability of the BZO sample under irradiation, making it a promising photocatalyst for the abatement of toxic species.

Funder

Tunisian Ministry of the Higher Education and Scientific Research through the Young Researchers Encouragement Program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3