Removal of Contaminants of Emerging Concern from a Wastewater Effluent by Solar-Driven Heterogeneous Photocatalysis: A Case Study of Pharmaceuticals

Author:

Pérez-Lucas GabrielORCID,Aatik Abderrazak El,Aliste Marina,Navarro Ginés,Fenoll José,Navarro Simón

Abstract

Abstract The occurrence of emerging micropollutants (pharmaceuticals, pesticides, personal care products, industrial compounds, etc.) in the environment is considered a major threat to human health and aquatic ecosystems. These micropollutants enter the environment through anthropogenic actions and have been identified in surface, ground, waste, and even in drinking water, in quantities ranging from ng L−1 to µg L−1. Currently, the pollution of the global water cycle with persistent organic pollutants remains one of the major challenges of the twenty-first century. Most of these organic substances are only partially removed by conventional wastewater treatment plants. Particularly, considerable amounts of pharmaceuticals are used in human and veterinary medicine, which are not efficiently removed during conventional wastewater treatments and subsequently continuously enter freshwater systems and even agricultural crops. Accordingly, we have evaluated the effectivity of TiO2 as a photocatalyst in tandem with Na2S2O8 as an oxidant for the treatment of a wastewater effluent polluted with pharmaceutical (atenolol, carbamazepine, clarithromycin, erythromycin, irbesartan, and ketoprofen) residues. Results show that the use of solar heterogeneous photocatalysis by means of band-gap semiconductor materials, especially TiO2 in combination with a strong oxidant such as Na2S2O8, significantly enhances their disappearance from the wastewater effluent. However, the selected pharmaceuticals show a slow degradation in wastewater effluent compared to pure water indicating that the occurrence of dissolved salts and organic carbon in wastewater effluent noticeably slows down the efficiency of the treatment. A single first-order model satisfactorily explains the photocatalytic degradation of the compounds studied for both, pure and wastewater. In the case of wastewater effluent, the highest DT50 values were observed for macrolides (13 and 16 min for erythromycin and clarithromycin, respectively), while the other compounds studied showed DT50 values below 10 min. This methodology has a notorious interest in some areas of the Mediterranean basin with water shortage, such as SE of Spain, where more than 3000 h of sunlight per year are recovered.

Funder

Ministerio de Ciencia e Innovación

Universidad de Murcia

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Water Science and Technology,Ecological Modeling,Environmental Chemistry,Environmental Engineering

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3