Numerical and Experimental Study on Nonlinear Phenomena and Thermal Deviation Control in a 1000 MW Tower-Type Boiler

Author:

Wang Wenshuai1ORCID,Yang Mo2

Affiliation:

1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Academic Affairs Office, Shanghai Jian Qiao University, Shanghai 201306, China

Abstract

Numerical and experimental studies were conducted to study the nonlinear phenomena of a 1000 MW ultra-supercritical four-corner tangential pulverized coal boiler. In this paper, (1) a 3D model of a furnace with a symmetrical structure was established to analyze the asymmetric flow phenomenon and multi-solution phenomenon of flow for multiple timepoints under the same boundary conditions. (2) The visual experiment verified that the flow in the furnace also behaved asymmetrically. (3) On the basis of correctly predicting the nonlinear law, the “diagonal start up” method and the “sequential start up” method are proposed. (4) An uneven coefficient of velocity distribution M, deviation coefficient of flue gas mass flow rate Eq and gas temperature deviation coefficient ET are proposed to quantitatively analyze the degree to which the actual tangent circle deviates from the ideal tangent circle. The tangent circle under the “sequential start up” method is the closest to the ideal, which can reduce the thermal deviation of the furnace outlet from 67 K under the “simultaneous start up” method to 41 K. In this paper, the initial steady-state flow field in the furnace is established by using the initial value sensitivity of the nonlinear system through different burner-opening methods, so as to reduce the thermal deviation at the furnace outlet and achieve the purpose of accurate control.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3