The Nonlinear Flow Characteristics within Two-Dimensional and Three-Dimensional Counterflow Models within Symmetrical Structures

Author:

Wang Wenshuai1ORCID,Yang Mo2

Affiliation:

1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

In this paper, we investigate the nonlinear characteristics of the flow in a two-dimensional and a three-dimensional counterflow model with symmetrical structures. Through numerical simulations, we obtain the velocity fields of the fluid flow in these models for different Re. The numerical results are analyzed to understand the nonlinear characteristics and differences between the two-dimensional and three-dimensional models. The findings indicate that, when Re varies, both the two-dimensional and three-dimensional models exhibit solution bifurcations and nonlinear phenomena such as symmetry breaking, self-sustained oscillations, and chaos. As Re increases, the two-dimensional counterflow model displays a unique solution, an asymmetric solution, and an oscillating solution. Specifically, when Re < 4320, both the laminar and turbulent models show a unique, symmetric, and steady-state velocity distribution. For 4652 < Re < 8639, the two-dimensional model solutions are not unique, presenting a pair of antisymmetric, asymmetric solutions that nevertheless remain steady-state. When Re > 8639, the solution becomes oscillatory and unsteady. The three-dimensional counterflow model exhibits a two-dimensional solution independent of the Z-axis. At Re = 4652, both the three-dimensional and two-dimensional models produce the same unique, symmetric, and steady-state velocity distribution with no three-dimensional flow (W = 0). At Re = 8639, the three-dimensional model solutions are not unique, showing a pair of antisymmetric, asymmetric solutions, while still being steady and time-independent. At Re = 87,627, the three-dimensional model solution becomes oscillatory and unsteady. By elucidating the flow characteristics and nonlinear features of both models, this study compares the differences between the two-dimensional and three-dimensional flows, thereby laying the groundwork for simplification of the problem and further theoretical research.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3